Fixed timing problems by re-organizing the pipeline

This commit is contained in:
Lemonochrome 2023-11-28 19:34:50 +01:00
parent f180a80f12
commit 909de11c18
6 changed files with 96 additions and 147 deletions

View file

@ -60,7 +60,7 @@
<Option Name="EnableBDX" Val="FALSE"/>
<Option Name="DSABoardId" Val="basys3"/>
<Option Name="FeatureSet" Val="FeatureSet_Classic"/>
<Option Name="WTXSimLaunchSim" Val="306"/>
<Option Name="WTXSimLaunchSim" Val="501"/>
<Option Name="WTModelSimLaunchSim" Val="0"/>
<Option Name="WTQuestaLaunchSim" Val="0"/>
<Option Name="WTIesLaunchSim" Val="0"/>

View file

@ -58,51 +58,56 @@ ARCHITECTURE cpu_arch OF cpu IS
END COMPONENT;
-- Signaux internes
signal PC : STD_LOGIC_VECTOR (7 downto 0) := "00000000"; -- Program Counter
signal PC : STD_LOGIC_VECTOR (7 downto 0) := "00000000"; -- Program Counter
signal IR : STD_LOGIC_VECTOR (31 downto 0); -- Instruction Register
signal OP : STD_LOGIC_VECTOR (7 downto 0);
signal A : STD_LOGIC_VECTOR (7 downto 0);
signal B : STD_LOGIC_VECTOR (7 downto 0);
signal C : STD_LOGIC_VECTOR (7 downto 0);
signal OP_DI : STD_LOGIC_VECTOR (7 downto 0);
signal A_DI : STD_LOGIC_VECTOR (7 downto 0);
signal B_DI : STD_LOGIC_VECTOR (7 downto 0);
signal C_DI : STD_LOGIC_VECTOR (7 downto 0);
signal OP_EX : STD_LOGIC_VECTOR (7 downto 0);
signal A_EX : STD_LOGIC_VECTOR (7 downto 0);
signal B_EX : STD_LOGIC_VECTOR (7 downto 0);
signal C_EX : STD_LOGIC_VECTOR (7 downto 0);
signal OP_LI_DI : STD_LOGIC_VECTOR (7 downto 0);
signal A_LI_DI : STD_LOGIC_VECTOR (7 downto 0);
signal B_LI_DI : STD_LOGIC_VECTOR (7 downto 0);
signal C_LI_DI : STD_LOGIC_VECTOR (7 downto 0);
signal OP_MEM: STD_LOGIC_VECTOR (7 downto 0);
signal A_MEM : STD_LOGIC_VECTOR (7 downto 0);
signal B_MEM : STD_LOGIC_VECTOR (7 downto 0);
signal C_MEM : STD_LOGIC_VECTOR (7 downto 0);
signal OP_DI_EX : STD_LOGIC_VECTOR (7 downto 0);
signal A_DI_EX : STD_LOGIC_VECTOR (7 downto 0);
signal B_DI_EX : STD_LOGIC_VECTOR (7 downto 0);
signal C_DI_EX : STD_LOGIC_VECTOR (7 downto 0);
signal OP_RE : STD_LOGIC_VECTOR (7 downto 0);
signal A_RE : STD_LOGIC_VECTOR (7 downto 0);
signal B_RE : STD_LOGIC_VECTOR (7 downto 0);
signal C_RE : STD_LOGIC_VECTOR (7 downto 0);
signal OP_EX_MEM : STD_LOGIC_VECTOR (7 downto 0);
signal A_EX_MEM : STD_LOGIC_VECTOR (7 downto 0);
signal B_EX_MEM : STD_LOGIC_VECTOR (7 downto 0);
signal C_EX_MEM : STD_LOGIC_VECTOR (7 downto 0);
signal W_ADDRESS_HANDLE : STD_LOGIC_VECTOR(3 DOWNTO 0);
signal W_DATA_HANDLE : STD_LOGIC_VECTOR(7 DOWNTO 0);
signal W_ENABLE_HANDLE : STD_LOGIC;
signal OP_MEM_RE: STD_LOGIC_VECTOR (7 downto 0);
signal A_MEM_RE : STD_LOGIC_VECTOR (7 downto 0);
signal B_MEM_RE : STD_LOGIC_VECTOR (7 downto 0);
signal C_MEM_RE : STD_LOGIC_VECTOR (7 downto 0);
-- Register file specific signals
signal R_ADDRESS_A_HANDLE : STD_LOGIC_VECTOR(3 DOWNTO 0);
signal R_ADDRESS_B_HANDLE : STD_LOGIC_VECTOR(3 DOWNTO 0);
signal W_ADDRESS_HANDLE : STD_LOGIC_VECTOR(3 DOWNTO 0);
signal W_DATA_HANDLE : STD_LOGIC_VECTOR(7 DOWNTO 0);
signal W_ENABLE_HANDLE : STD_LOGIC;
signal A_DATA_OUT_HANDLE : STD_LOGIC_VECTOR(7 DOWNTO 0);
signal B_DATA_OUT_HANDLE : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
-- Instantiation des composants
RegisterFile_Instance: reg PORT MAP (
address_A => "0000",
address_B => "0000",
address_A => R_ADDRESS_A_HANDLE,
address_B => R_ADDRESS_B_HANDLE,
address_W => W_ADDRESS_HANDLE,
W_Enable => W_ENABLE_HANDLE,
W_Data => W_DATA_HANDLE,
reset => '1',
reset => '1', -- Reset unactive
clk => clk,
A_Data => open,
B_Data => open
A_Data => A_DATA_OUT_HANDLE,
B_Data => B_DATA_OUT_HANDLE
);
InstructionMemory_Instance: instruction PORT MAP (
instruction => PC,
code => IR,
@ -110,83 +115,69 @@ BEGIN
);
-- Pipeline
-- Lecture Instruction (LI)
LI: process(clk)
begin
if rising_edge(clk) then
-- Charger les instruction
OP <= IR(31 downto 24);
A <= IR(23 downto 16);
B <= IR(15 downto 8);
C <= IR(7 downto 0);
end if;
end process;
DI: process(clk)
OP_LI_DI <= IR(31 downto 24);
A_LI_DI <= IR(23 downto 16);
B_LI_DI <= IR(15 downto 8);
C_LI_DI <= IR(7 downto 0);
LI_DI: process(clk)
begin
if rising_edge(clk) then
-- Banc de registre
OP_DI <= OP;
case OP is
when X"06" =>
A_DI <= A;
B_DI <= B;
C_DI <= C;
case OP_LI_DI is
when X"06" => -- AFC
OP_DI_EX <= OP_LI_DI;
A_DI_EX <= A_LI_DI;
B_DI_EX <= B_LI_DI;
C_DI_EX <= C_LI_DI;
when others =>
null;
end case;
end if;
end process;
EX: process(clk)
DI_EX: process(clk)
begin
if rising_edge(clk) then
-- Executer instruction si nécéssaire (ALU)
OP_EX <= OP_DI;
case OP_DI is
case OP_DI_EX is
when X"06" =>
A_EX <= A_DI;
B_EX <= B_DI;
C_EX <= C_DI;
OP_EX_MEM <= OP_DI_EX;
A_EX_MEM <= A_DI_EX;
B_EX_MEM <= B_DI_EX;
C_EX_MEM <= C_DI_EX;
when others =>
null;
end case;
end if;
end process;
MEM: process(clk)
EX_MEM: process(clk)
begin
if rising_edge(clk) then
-- Ecrire ou lire memoire des données
OP_MEM <= OP_EX;
case OP_EX is
case OP_EX_MEM is
when X"06" =>
A_MEM <= A_EX;
B_MEM <= B_EX;
C_MEM <= C_EX;
OP_MEM_RE <= OP_EX_MEM;
A_MEM_RE <= A_EX_MEM;
B_MEM_RE <= B_EX_MEM;
C_MEM_RE <= C_EX_MEM;
when others =>
null;
end case;
end if;
end process;
RE: process(clk)
-- Write Back (RE)
MEM_RE: process(clk)
begin
if rising_edge(clk) then
if rising_edge(clk) then
-- Ecrire dans les registres
OP_RE <= OP_MEM;
case OP_MEM is
case OP_MEM_RE is -- Si OP_RE : b c Si OP_MEM : a b
when X"06" =>
A_RE <= A_MEM;
B_RE <= B_MEM;
C_RE <= C_MEM;
W_ENABLE_HANDLE <= '1';
W_ADDRESS_HANDLE <= A_RE(3 downto 0);
W_DATA_HANDLE <= B_RE;
W_ADDRESS_HANDLE <= A_MEM_RE(3 downto 0);
W_DATA_HANDLE <= B_MEM_RE;
when others =>
null;
end case;

View file

@ -16,7 +16,7 @@ architecture Behavioral of data_memory is
type MemoryArray is array (0 to 255) of STD_LOGIC_VECTOR(7 downto 0);
signal Memory : MemoryArray := (others => X"00");
begin
process(CLK, RST)
process(CLK)
begin
if RST = '1' then
Memory <= (others => X"00"); -- Reset the memory to 0x00

View file

@ -25,10 +25,10 @@ entity instruction is
end loop;
init_result(0) := X"06000A0F";
init_result(1) := X"06010B0F";
init_result(2) := X"06020C0F";
init_result(3) := X"06030D0F";
init_result(4) := X"06040E0F";
init_result(5) := X"06050F0F";
init_result(2) := X"06020B0F";
-- init_result(6) := X"0502010F";
return init_result;
end function init;
end instruction;
@ -37,9 +37,9 @@ architecture behavior_instr of instruction is
-- Memory variable
signal code_memory: code_array := init;
begin
process(instruction, clk) is
process(clk) is
begin
if clk'event AND clk = '1' then
if rising_edge(clk) then
code <= code_memory(CONV_INTEGER(UNSIGNED(instruction)));
end if;
end process;

View file

@ -1,31 +0,0 @@
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity pipeline_step is
port(
A_in: in STD_LOGIC_VECTOR(7 downto 0);
B_in: in STD_LOGIC_VECTOR(7 downto 0);
C_in: in STD_LOGIC_VECTOR(7 downto 0);
OP_in: in STD_LOGIC_VECTOR(3 downto 0);
clk : in STD_LOGIC;
A_out: out STD_LOGIC_VECTOR(7 downto 0);
B_out: out STD_LOGIC_VECTOR(7 downto 0);
C_out: out STD_LOGIC_VECTOR(7 downto 0);
OP_out: out STD_LOGIC_VECTOR(3 downto 0)
);
end pipeline_step;
architecture behavior_pipeline_step of pipeline_step is
begin
process(clk, A_in, B_in, C_in, OP_in)
begin
if clk'event and clk='1' then
A_out <= A_in;
B_out <= B_in;
C_out <= C_in;
OP_out <= OP_in;
end if;
end process;
end behavior_pipeline_step;

View file

@ -1,52 +1,41 @@
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;
entity reg is
port(
address_A: in STD_LOGIC_VECTOR(3 downto 0);
address_B: in STD_LOGIC_VECTOR(3 downto 0);
address_W: in STD_LOGIC_VECTOR(3 downto 0);
W_Enable: in STD_LOGIC;
W_Data: in STD_LOGIC_VECTOR(7 downto 0);
reset: in STD_LOGIC;
clk: in STD_LOGIC;
A_Data: out STD_LOGIC_VECTOR(7 downto 0);
B_Data: out STD_LOGIC_VECTOR(7 downto 0)
address_A: in STD_LOGIC_VECTOR(3 downto 0);
address_B: in STD_LOGIC_VECTOR(3 downto 0);
address_W: in STD_LOGIC_VECTOR(3 downto 0);
W_Enable: in STD_LOGIC;
W_Data: in STD_LOGIC_VECTOR(7 downto 0);
reset: in STD_LOGIC;
clk: in STD_LOGIC;
A_Data: out STD_LOGIC_VECTOR(7 downto 0);
B_Data: out STD_LOGIC_VECTOR(7 downto 0)
);
end reg;
architecture behavior_reg of reg is
-- Array of STD_LOGIC_VECTOR
type memory_array is array(0 to 15) of
STD_LOGIC_VECTOR(7 downto 0);
-- Memory variable
type memory_array is array(0 to 15) of STD_LOGIC_VECTOR(7 downto 0);
signal memory: memory_array;
begin
-- Convert address_A and address_B to integers
-- Using Bypass to avoid delay between Read Data and Write Data if they are at the same time called (WEnable = 1)
A_Data <= memory(CONV_INTEGER(unsigned(address_A))) when (W_Enable = '0' or address_A /= address_W)
-- bypass
A_Data <= memory(to_integer(unsigned(address_A))) when (W_Enable = '0' or address_A /= address_W)
else W_Data;
B_Data <= memory(CONV_INTEGER(unsigned(address_B))) when (W_Enable = '0' or address_B /= address_W)
B_Data <= memory(to_integer(unsigned(address_B))) when (W_Enable = '0' or address_B /= address_W)
else W_Data;
-- Write data synchronously
process(address_W, W_Enable, W_Data, reset, clk) is
process(clk)
begin
-- Reset the memory if shutdown
if reset = '0' then
memory <= (others => "00000000");
end if;
-- Else Doing writing routine at each clock tick
if reset = '1' then
if clk'event and clk='1' then
if W_Enable = '1' then
memory(CONV_INTEGER(unsigned(address_W))) <= W_Data;
end if;
if rising_edge(clk) then
if reset = '0' then
memory <= (others => (others => '0'));
elsif W_Enable = '1' then
memory(to_integer(unsigned(address_W))) <= W_Data;
end if;
end if;
end process;
end behavior_reg;
end behavior_reg;